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Abstract Based on an optimized explicit four-step method, a new hybrid high alge-
braic order four-stepmethod is introduced in this paper. For this newhybridmethod,we
investigate the procedure of vanishing of the phase-lag and its first, second, third and
fourth derivatives. More specifically, we investigate: (1) the construction of the new
method, i.e. the computation of the coefficients of themethod in order its phase-lag and
first, second, third and fourth derivatives of the phase-lag to be eliminated, (2) the defi-
nition of the local truncation error, (3) the analysis of the local truncation error, (4) the
stability (interval of periodicity) analysis (using scalar test equation with frequency
different than the frequency of the scalar test equation for the phase-lag analysis).
Finally, we investigate computationally the new obtained method by applying it to the
numerical solution of the resonance problem of the radial Schrödinger equation. The
efficiency of the new developed method is tested comparing this method with well
known methods of the literature but also using very recently developed methods.
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1 Introduction

In this paper, a new hybrid explicit four-step method of eighth algebraic order is
proposed. This method is based on an optimal explicit four-step method. The new
insights of the proposed method are:

– The newmethod is an explicit method which can be simply applied to any problem
(linear or non-linear)

– The new method has low computational cost, i.e. only two stages
– The high algebraic order of the new obtained method
– The new method is based on an optimal explicit four-step method
– The new produced method has vanished the phase-lag and its first, second, third
and fourth derivatives

Our investigation is concerned with the development of special methods for prob-
lems with mathematical models of the form:

y′′(x) = f (x, y(x)), (1)

with periodical and/or oscillating solutions.

Remark 1 Based on (1) it is easy to see that the characteristic of the mathematical
model of the above mentioned problems is that their models consist of a system of
second order ordinary differential equations fromwhich the first derivative y′ does not
appear explicitly. Applied Sciences which have problems with the above described
type of models are: astronomy, astrophysics, quantum mechanics, quantum chem-
istry, quantum physics, celestial mechanics, electronics, physical chemistry, chemical
physics etc. (see for more details in [1–4]).

Remark 2 Our investigate has as aim and scope the development of an efficient algo-
rithm for the above described problems. The meaning of the term efficient is an
algorithm which is effective , fast and reliable for the approximate solution of the
above mentioned problems. An extensive research has been done on this research
subject (see for example [5–117]).

Themain classes of the finite differencemethods whichwas developed as a result of
the above described research are presented in Fig. 1. It is obvious that much research
is done on this subject.

A recent bibliography on the subject of this paper is presented in the present section:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta–Nyström type have been obtained in [5–14].
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Fig. 1 Main classes of the finite difference methods developed in the last decades

– In [15–20], exponentially and trigonometrically fitted Runge–Kutta and Runge–
Kutta–Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [25–59].

– Symplectic integrators are investigated in [60–89].
– Exponentially and trigonometrically multistep methods have been produced in
[90–110].

– Nonlinear methods have been studied in [111,112].
– Review papers have been presented in [113–117].
– Special issues and Symposia in International Conferences have been developed
on this subject (see [118–120]).

In this paper, we will investigate a low computational cost hybrid method which
has only two stages. The idea is the vanishing of the phase-lag and its derivatives in
the whole method (i.e. when both of stages are applied to the scalar test equation). Our
investigation will examine how this elimination of the phase-lag and its derivatives
affects the effectiveness of the final proposed method.We will also compare the devel-
oped method with other well known methods of the literature in order to investigate
its efficiency.

Remark 3 Methods produced using the above mentioned methodology can be applied
effectively to (1) problems with periodic solution and/or, (2) problems with oscillating
solution, (3) problems with solutions containing functions cos and sin, (4) problems
with solutions containing combination of the functions cos and sin.

A short description of the investigation for this paper is presented in Sect. 2. In Sect.
3, we present the phase-lag analysis of symmetric 2m methods. The development of
the new proposed low cost explicit hybrid four-step method is presented in Sect. 4.
A comparative local truncation error (LTE) analysis with other similar methods is
presented in Sect. 5. In Sect. 6, we describe the stability analysis of the new produced
method. We use scalar test equation with frequency different than the frequency of the
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Analysis of the New Low Cost Hybrid
Explicit Four Step Method

1. Presentation of the first stage of the new
proposed low cost method. Free parameters:
a a

2. Presentation of the second stage of the new low
cost method: Free parameters: ja b j

3. Computation of the Phase Lag
4. Computation of the First, Second, Third and

Fourth Derivatives of the Phase Lag
5. Request of Elimination of the Phase Lag and its

First, Second, Third and Fourth Derivatives of the
Phase Lag for the New Proposed Method

Analysis of the Method
Computation of the Local Truncation
Error
Comparative Local Truncation Error
Analysis based on a test equation
Stability Analysis

1

Implementation of the Method

Application of the Method
to the Coupled Differential

Equations arising from the
Schrödinger Equation

1

Fig. 2 Flowchart of the presentation of the analysis of the new proposed predictor–corrector high algebraic
order method

scalar test equation for the phase-lag analysis. Numerical results on the approximate
solution of the resonance problem of the radial Schrödinger type are presented in Sect.
7. Some remarks and conclusions are finally presented in Sect. 8.

2 Analysis of the new low computational cost hybrid four-step method

In Fig. 2, we present the flowchart of the analysis for the new low cost four-step
method.

The subjects of our research in the present paper are:

– The calculation of the coefficients of the new low cost hybrid method in order to
have
1. the highest algebraic accuracy ,
2. eliminated phase-lag ,
3. eliminated first derivative of the phase-lag ,
4. eliminated second derivative of the phase-lag ,
5. eliminated third derivative of the phase-lag ,
6. eliminated fourth derivative of the phase-lag ,

– The study of the produced LTE. We will compare the LTE analysis of the new low
cost four-step hybrid method with other methods of the same form.

– The study of the stability of the new low cost method. For the specific study, we
will use a scalar test equation with frequency different than the frequency of the
scalar test equation for the phase-lag analysis.
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– The study of the efficiency/effectiveness of the new obtained low cost four-step
method using the approximate solution of the resonance problem of the radial
Schrödinger equation.

Remark 4 For the computation of the phase-lag and its derivatives, we will use the
direct formula for any 2m symmetric multistep method developed by Simos and his
coworkers in [28,31].

3 Phase-lag analysis of symmetric 2m-step methods

In the present paper, we investigate the numerical solution of the initial or boundary
value problem of the form (1). More specifically, we will study the case of using a
multistep method with 2m steps for the numerical solution of the problem (1):

m∑

i=−m

ai yn+i = h2
m∑

i=−m

bi f (xn+i , yn+i ) (2)

where

– 2m are the number of steps over the equally spaced intervals [x−i−1, xi+1], i =
0(1)m − 1, where {xi }m

i=−m ∈ [a, b]
– h = |xi+1 − xi |, i = 0(1)m − 1, where h is called stepsize of integration
– |a0| + |b0| �= 0

Remark 5 If bm �= 0, the method is implicit and if bm = 0 it is explicit.

Remark 6 The method (2) is symmetric if

ai−m = am−i , bi−m = bm−i , i = 0(1)m (3)

If we apply the method (2) with coefficients (3) (i.e. a symmetric 2m-step method)
to the scalar test equation

y′′ = −w2 y, (4)

the following difference equation is obtained

Am(v) yn+m + · · · + A1(v) yn+1 + A0(v) yn

+ A1(v) yn−1 + · · · + Am(v) yn−m = 0, (5)

where v = w h, h is the step length and A0(v), A1(v), . . . , Am(v) are polynomials of
v.

The associated characteristic equation of the difference equation (5) is given by:

Am(v) λm + · · · + A1(v) λ + A0(v) + A1(v) λ−1 + · · · + Am(v) λ−m = 0 (6)
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Theorem 1 [28,31] The symmetric 2m-step method with characteristic equation
given by (6) has phase-lag order k and phase-lag constant c given by:

− c vk+2 + O
(
vk+4

)

= 2 Am (v) cos (m v) + · · · + 2 A j (v) cos ( j v) + · · · + A0 (v)

2m2 Am (v) + · · · + 2 j2 A j (v) + · · · + 2 A1 (v)
(7)

Remark 7 A direct method for the computation of the phase-lag of any symmetric
2m-step method is given by the formula (7).

Remark 8 For the method which will be studied in this paper—for the low cost hybrid
symmetric four-step method—the number m = 2 and the direct formula for the
computation of the phase-lag is given by:

− c vk+2 + O(vk+4) = 2 A2(v) cos(2 v) + 2 A1(v) cos(v) + A0(v)

8 A2(v) + 2 A1(v)
(8)

where k is the phase-lag order and c is the phase-lag constant.

4 The new low computational cost proposed method

We consider the family of hybrid explicit symmetric four-step methods for the numer-
ical solution of initial or boundary value problems of the form y′′ = f (x, y):

ȳn = yn − a2 h2
(

y′′
n+1 − 2 y′′

n + y′′
n−1

)
− 2 a3 h2 y′′

n

yn+2 + a1 yn+1 + a0 yn + a1 yn−1 + yn−2

= h2
[

b1
(
y′′

n+1 + y′′
n−1

) + b0 ȳ′′
n

]
, (9)

where

a1 = − 1

10
(10)

and the coefficient ai , i = 0, 2, 3 and b j , j = 0, 1 are free parameters, h is the step
size of the integration , n is the number of steps, yn is the approximation of the solution
on the point xn, xn = x0 + n h and x0 is the initial value point.

The construction of the new hybrid low cost method is presented in the flowchart
of the Fig. 3.

Our study for the new hybridmethod (9) is based on the above flowchart. Therefore,
we apply the newmethod (9) to the scalar test equation (4). The result of this application
is the difference equation (5) with m = 2 and A j (v) , j = 0, 1, 2 given by:
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Construction of the Low Cost Hybrid
Explicit Four Step Method

1. We consider the following Hybrid Explicit Four Step Method:

with coefficient:

and to be free parameters

2. We apply the above family of methods to the scalar test equation

3. The difference equation is

produced

4. The associate characteristic equation is

5. The direct formula for the computation of the phase lag is produced.

Therefore we have the equation:
6. We produce the direct formula for the computation of the first derivative of

phase lag. Therefore we have the equation:
7. We also produce the direct formula for the calculation of the second derivative

of phase lag. Therefore we have the equation:

8. We also produce the direct formula for the calculation of the third derivative of
phase lag. Therefore we have the equation:

9. We also produce the direct formula for the calculation of the fourth derivative
of phase lag. Therefore we have the equation:

10. Solving the system of equations from the steps 5 9, we obtain the free
parameters of the method. For the cases of small values of Taylor series
expansions of the produced coefficients are also given.

n n n n n n

n n n n n

n n n

y y a h y y y a h y
y a y y a y y
h b y y b y

1

a

jia i b j

y w y

j n j n j nA v y y A v y

i i
jA v A v

1

2

Phase Lag

Derivative of the Phase Lag

Second Derivative of the
Phase Lag

Third Derivative of the
Phase Lag

Fourth Derivative of the
Phase Lag

2

3
v

3

Fig. 3 Flowchart of the construction of any method of the family

A2 (v) = 1, A1 (v) = − 1

10
+ v2

(
v2 a2 b0 + b1

)

A0 (v) = a0 + v2 b0
(
−2 a2 v2 + 2 a3 v2 + 1

)
(11)

Using the formulae (8) and (11) and since our method (9) requests vanishing of the
phase-lag and its first, second, third and fourth derivatives, the following system of
equations is obtained:

Phase-Lag = T0
Tdenom

= 0 (12)

First Derivative of the Phase-Lag = T1
T 2

denom

= 0 (13)

Second Derivative of the Phase-Lag = T2
T 3

denom

= 0 (14)

Third Derivative of the Phase-Lag = T3
T 4

denom

= 0 (15)

Fourth Derivative of the Phase-Lag = T4
T 5

denom

= 0 (16)

where Tj , j = 0(1)4 and Tdenom are given in Supplement Material A.
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The solution of the above mentioned system of equations (12)–(16) gives the coef-
ficients of the new low cost hybrid explicit four-step method:

a3 = 1

4

T5
T6

, a2 = 1

4

T7
T8

, a0 = −1

5

T9
T10

b1 = −1

5

T11
v2 T10

, b0 = 2

5

T12
v2 T10

(17)

where Ti , i = 5(1)12 are given in Supplement Material B.
In order to avoid cancellations for small values of |w|, the following Taylor series

expansions should be used:

a3 = − 23

162
+ 13789 v2

944784
+ 1353383 v4

151524457920
+ 257030521337 v6

3866146543828800

− 196786440533006381 v8

4606104900051667584000
+ 323195010132376530919 v10

399584206184382214579584000

+ 7429070440215784916225261491 v12

17046693786768424406756799390720000

+ 60206654185492044894693775573 v14

970862482074545421291070840299600000

− 17890543478220411720210383352400611281 v16

1402168336193040950372349604707620278272000000

− 50507895841319749072828019947999278182291 v18

35776325097965439848750500164114931400110080000000
+ · · ·

a2 = − 253

5400
− 13789 v2

19683000
+ 24860200613 v4

44194633560000
+ 5603512683427 v6

80544719663100000

− 18793107478018265309 v8

1343447262515069712000000
− 1197848032310872123747693 v10

582726967352224062928560000000

+ 458801039974559531199529721657 v12

3551394538910088418074333206400000000

+ 45038508304217300916628869155441 v14

809052068395454517742559033583000000000

− 18396036644350200310686810152021988829997 v16

34762090001452473561314500616709752732160000000000

− 6719578198138216512424682794224530596768387 v18

5509035567621489831782232815126393422118400000000000
+ · · ·

a0 = −9

5
+ 13789 v10

84672000
− 70241 v12

4694215680
+ 43110959 v14

59147117568000

− 44855753 v16

1761508701388800
+ 3432896953273 v18

11413783706083799040000
+ · · ·
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b0 = 81

28
− 13789 v2

35280
+ 514081 v4

9779616
− 161722807 v6

123223161600

− 63428323157 v8

80735815480320
+ 381354897348343 v10

5944679013585312000

− 1318361709125692223 v12

455409969872743581696000
+ 10600930992096878467 v14

114763312407931382587392000

− 205977603278502947810603 v16

237797616741102379917857341440000

+ 46298716134741086398304563 v18

599249994187577997393000500428800000
+ · · ·

b1 = 141

280
+ 13789 v2

70560
− 514081 v4

19559232
+ 161722807 v6

246446323200

− 11558001461 v8

807358154803200
+ 5370545390141 v10

19022972843472998400

+ 20838432004969571 v12

910819939745487163392000
+ 87686104037081959 v14

45905324963172553034956800

+ 53929663347835927866899 v16

475595233482204759835714682880000

+ 5965735598383585347890927 v18

1198499988375155994786001000857600000
+ · · · (18)

In Fig. 4 the behavior of the coefficients a0, b j , j = 0, 2(1)4 is presented
The new obtained method is the low cost hybrid four-step method (9) with the

coefficients given by (17)–(18).
The LTE of this new proposed method (mentioned as H yMeth8) is given by:

LTEHyMeth8 = 13789 h10

84672000

(
y(10)

n + 5w2 y(8)
n + 10w4 y(6)

n

+ 10w6 y(4)
n + 5w8 y(2)

n + w10 yn

)
+ O(h12) (19)

where y( j)
n is the j th derivative of yn .

5 Comparative error analysis

We will study the following similar methods:

5.1 Classical predictor–corrector explicit four-step method, i.e. the method (9)
with constant coefficients

LTECL = 13789 h10

84672000
y(10)

n + O(h12) (20)
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Fig. 4 Behavior of the coefficients of the new proposed method given by (17) for several values of v = w h
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Comparative Local Truncation
Error Analysis of a Low

Computational Cost Hybrid Explicit
Four Step Method for the
Numerical Solution of the

Schrödinger Equation

We consider the test problem

y x f x y x

f x g x G

cg x V x V g

cV G E

1

Computation of ky x k

c

iv

y x V x V G y x

y x g x y x g x G y x

y x g x y x g x y x
g x G y x

New expression of the Local Truncation

Error LTE formula after the

substitution of the above expressions into
the LTE formula

Calculation of the
Local Truncation Error

LTE as function of G

1

Fig. 5 Flowchart of the algorithm for the computations on the comparative error analysis

5.2 The low computational cost hybrid explicit four-step method with vanished
phase-lag and its first, second, third and fourth derivatives developed in
Sect. 4

LTEHyMeth8 = 13789 h10

84672000

(
y(10)

n + 5w2 y(8)
n + 10w4 y(6)

n + 10w6 y(4)
n

+ 5w8 y(2)
n + w10 yn

)
+ O(h12) (21)

The flowchart based on which we will investigate our comparative LTE analysis is
presented in the Fig. 5.

Based on the above flowchart, we have to calculate the derivatives included in the
formulae of the LTE (based on the test equation which we use for the comparative
LTE analysis). These formulae of the derivatives are given by:

y(2)
n = (V (x) − Vc + G) y(x)

y(3)
n =

(
d

dx
g (x)

)
y (x) + (g (x) + G)

d

dx
y (x)

y(4)
n =

(
d2

dx2
g (x)

)
y (x) + 2

(
d

dx
g (x)

)
d

dx
y (x)

+ (g (x) + G)2 y (x)

y(5)
n =

(
d3

dx3
g (x)

)
y (x) + 3

(
d2

dx2
g (x)

)
d

dx
y (x)

+ 4 (g (x) + G) y (x)
d

dx
g (x) + (g (x) + G)2

d

dx
y (x)
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y(6)
n =

(
d4

dx4
g (x)

)
y (x) + 4

(
d3

dx3
g (x)

)
d

dx
y (x)

+ 7 (g (x) + G) y (x)
d2

dx2
g (x) + 4

(
d

dx
g (x)

)2

y (x)

+ 6 (g (x) + G)

(
d

dx
y (x)

)
d

dx
g (x) + (g (x) + G)3 y (x)

y(7)
n =

(
d5

dx5
g (x)

)
y (x) + 5

(
d4

dx4
g (x)

)
d

dx
y (x)

+ 11 (g (x) + G) y (x)
d3

dx3
g (x) + 15

(
d

dx
g (x)

)
y (x)

d2

dx2
g (x)

+ 13 (g (x) + G)

(
d

dx
y (x)

)
d2

dx2
g (x) + 10

(
d

dx
g (x)

)2 d

dx
y (x)

+ 9 (g (x) + G)2 y (x)
d

dx
g (x) + (g (x) + G)3

d

dx
y (x)

y(8)
n =

(
d6

dx6
g (x)

)
y (x) + 6

(
d5

dx5
g (x)

)
d

dx
y (x)

+ 16 (g (x) + G) y (x)
d4

dx4
g (x) + 26

(
d

dx
g (x)

)
y (x)

d3

dx3
g (x)

+ 24 (g (x) + G)

(
d

dx
y (x)

)
d3

dx3
g (x) + 15

(
d2

dx2
g (x)

)2

y (x)

+ 48

(
d

dx
g (x)

) (
d

dx
y (x)

)
d2

dx2
g (x) + 22 (g (x) + G)2 y (x)

d2

dx2
g (x)

+ 28 (g (x) + G) y (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2
(

d

dx
y (x)

)
d

dx
g (x) + (g (x) + G)4 y (x)

. . .

We mainly investigate two cases (based on the value of E):

– The Energy (E) is closed to the potential, i.e., G = Vc − E ≈ 0. Therefore, all
the terms of the formulae of the LTE which include non zero powers of G (i.e.
G j , j �= 0) are equal to zero (since G ≈ 0). Consequently, only the free of G
terms of the formulae of the LTE exist.

Remark 9 Same multistep methods with different coefficients have the same free of
G terms in the formulae of the LTE.

Based on the above mentioned remark in the specific case the formulae of the LTE
for both cases of methods (i.e. classical methods (methods with constant coefficients)
and methods with vanished the phase-lag and its derivatives) are the same. Therefore,
the error for the two kind of methods: (1) classical methods (methods with constant
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coefficients) and (2) methods with vanished the phase-lag and its derivatives, will be
approximately the same.

– The Energy (E) is far from the potential i.e. for the quantity G we have:
G � 0 or G � 0. Then |G| is a large number. In this case the formulae of the
LTE are different for the numerical methods of the same family (classical methods
(methods with constant coefficients) and (2) methods with vanished the phase-lag
and its derivatives).

The asymptotic expressions of the LTEs (based on the methodology presented
above) are given by:

5.3 Classical method

LTECL = h10
(
13789 y (x)

84672000

)
G5 + · · · + O(h12) (22)

5.4 The predictor–corrector explicit four-step method with vanished phase-lag
and its first, second, third and fourth derivatives developed in Sect. 4

LTEHyMeth8 = h10

⎛

⎝
13789

(
d4

dx4
g (x)

)
y (x)

5292000

⎞

⎠ G2 + · · · + O(h12) (23)

Based on the above analysis, we have the following theorem:

Theorem 2 The Analysis presented above gives us the following conclusions:

– For the Classical Hybrid Explicit Four-Step Method the error increases as the fifth
power of G.

– For the Hybrid Explicit Four-Step Method with Vanished Phase-Lag and its First,
Second, Third and Fourth Derivatives developed in Sect. 4, the error increases as
the second power of G.

So, for the numerical solution of the Schrödinger equation the New Proposed Low
Computational Cost Hybrid Explicit Four-Step Method with Vanished Phase-Lag and
its First, Second, Third and Fourth Derivatives developed in Sect. 4 is the most efficient,
from theoretical point of view, especially for large values of |G| = |Vc − E |.

6 Stability analysis

Our stability analysis for the new low cost hybrid explicit four-step method (9) with
the coefficients given by (10) and (17) is based on the flowchart presented Fig. 6.

Applying the above described method to the scalar test equation:

y′′ = −z2 y (24)
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Interval of Periodicity Analysis 
(Stability Analysis ) 

for Symmetric Four-Step 
Finite Difference Methods

We apply the method to the test equation
y z y ,z w

A Difference Equation is produced as a result 
of the above mentioned application  

s zh v wh

i n i n i n
i

A s v q q A s v q

    The above Difference Equation is associated 
with the Characteristic Equation given by: 

i i
i

i
A s v A s v

1

We present the necessary and sufficient 
conditions in order  the Symmetric Four-Step 

Method to have non zero interval of periodicity 
(see for details the theory developed by Lambert 

and Watson [19]). Based on this theory we 
develop the s vplane for the method 

Remark: The stability analysis is based on the fact 
that the frequency of the scalar test equation for 
the interval of periodicity analysis z  is different 

than the that the frequency of the scalar test 
equation for the phase-lag analysis w

1

Fig. 6 Flowchart for the stability analysis of the new low cost hybrid explicit four-step method

we have the following difference equation:

A2 (s, v) (yn+2 + yn−2) + A1 (s, v) (yn+1 + yn−1) + A0 (s, v) yn = 0 (25)

where

A2 (s, v) = 1, A1 (s, v) = 1

10

T13
T14

, A0 (s, v) = 1

5

T15
T14

(26)

where s = z h and Tj , j = 13(1)15 are given in Supplement Material C.

Remark 10 The frequency of the scalar test equation (4) for the phase-lag analysis,w,
is different than the frequency of the scalar test equation (24) for the stability analysis,
z i.e. z �= w.

The characteristic equation which is associated to the difference equation (25) is
given by:

A2 (s, v) (λ4 + 1) + A1 (s, v) (λ3 + λ) + A0 (s, v) λ2 = 0 (27)

Definition 1 (see [21]) A symmetric 2m-step method with the characteristic equation
given by (27) is said to have an interval of periodicity

(
0, v20

)
if, for all s ∈ (

0, s20
)
,

the roots λi , i = 1(1)4 satisfy

λ1,2 = e±i ζ(s), |λi | ≤ 1, i = 3, 4, . . . (28)

where ζ(s) is a real function of z h and s = z h .
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Fig. 7 s–v plane of the predictor–corrector symmetric explicit four-step method (9) with the coefficients
given by (10) and (17)

Definition 2 (see [21]) If for a method its interval of periodicity is equal to (0,∞),
then this method is called P-stable.

Definition 3 Amethod is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞) − S.1

Remark 11 A method can be characterized as singularly almost P-stable only in the
case for which the frequency of the scalar test equation (4) for the phase-lag analysis,
w, is equal with the frequency of the scalar test equation (24) for the stability analysis
z, i.e. only when w = z.

In Fig. 7, we present the s–v plane of the new proposed low cost hybrid four-step
method. The shadowed area of the s–v region is the stable area, while the white area
is the unstable area.

Remark 12 The investigation of the stability of the abovementioned family ofmethods
leads to two categories of problems for which these methods can be applied:

– Problems where the frequency of the scalar test equation for the stability analysis
is not equal to the frequency of the scalar test equation for the phase-lag analysis
(i.e. z �= w)

1 Where S is a set of distinct points.
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– Problems where the frequency of the scalar test equation for the stability analysis
is equal to the frequency of the scalar test equation for the phase-lag analysis (i.e.
z = w)

The Schrödinger equation and related problems are belonged into the second cate-
gory of problems described above.

For the first category of problems we have to develop the s–v plane in order to
investigate the stability of the proposed method (see Fig. 7 for our new obtained
hybrid low computational cost symmetric four-step method).

For the second category of problems we have to observe the surroundings of the
first diagonal of the s–v plane.

Investigating the second category of problems, i.e. investigating the case where
z = w or s = v (i.e. seeing the surroundings of the first diagonal of the s–v plane), we
extract the result that the interval of periodicity of the new produced four-step method
developed in Sect. 4 is equal to: (0, 16).

From the above analysis, we have the following theorem:

Theorem 3 The method produced in Sect. 4:

– is of hybrid type method
– is of a low computational cost since it has only two stages
– is of eighth algebraic order,
– has the phase-lag equals to zero
– has phase-lag’s first, second, third and fourth derivatives equal to zero
– has an interval of periodicity equals to: (0, 16) in the case where the frequency of

the scalar test equation for the phase-lag analysis is equal to the frequency of the
scalar test equation for the stability analysis

7 Numerical results

7.1 Radial Schrödinger equation

In order to examine the efficiency of the new developedmethod, the numerical solution
of the radial time-independent Schrödinger equation will be examined.

The radial time-independent Schrödinger equation has the form:

y′′(r) = [l(l + 1)/r2 + V (r) − k2] y(r), (29)

where:

– The function Q(r) = l(l + 1)/r2 + V (r) is called the effective potential. For the
effective potential, we have the following relation: Q(r) → 0 as r → ∞.

– k2 is a real number which denotes the energy,
– l is defined by user integer which denotes the angular momentum,
– V is defined by user function denotes the potential.
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The above described problem is a boundary value problem. Therefore, we need two
boundary conditions. The first is given by the definition of the problem:

y(0) = 0 (30)

while the second boundary condition, for large values of r , is determined by physical
considerations.

Since the new obtained hybrid low computational cost symmetric explicit four-
step method is a frequency dependent methods, the determination of the value of the
parameter w (frequency) in order to be possible the application of the method to the
numerical solution of the radial Schrödinger equation. Based on the mathematical
model given by (29), the parameter w is given by (for the case l = 0):

w =
√

|V (r) − k2| = √|V (r) − E | (31)

where V (r) is the potential and E is the energy.

7.1.1 Woods–Saxon potential

The model of the time-independent radial Schrödinger equation (29) consists of the
function of the potential (which is defined by the user). The known Woods–Saxon
potential is used for our numerical tests. The Woods–Saxon potential is given by

V (r) = u0

1 + y
− u0 y

a (1 + y)2
(32)

with y = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods–Saxon potential is shown in Fig. 8.
In order to determine the frequencyw , some values of the potential on critical points

are defined (see for details [116]). The critical point are defined studying the specific
potential. The above described methodology for the definition of the frequency w is
one of several methodologies for the determination of the frequency for these type of
methods (see [28] and references therein).

Remark 13 The above described methodology is known applied to some potentials,
such as the Woods–Saxon potential.

Here is the methodology for the choice of w for our numerical tests (see for details
[1,90]):

w =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(33)
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Fig. 8 The Woods–Saxon potential

For example, in the point of the integration region r = 6.5 − h, the value of w is
equal to:

√−37.5 + E . So, v = w h = √−37.5 + E h. In the point of the integration
region r = 6.5 − 3 h, the value of w is equal to:

√−50 + E , etc.

7.1.2 The radial Schrödinger equation and the resonance problem

We will use for our numerical tests the approximate solution of the radial time inde-
pendent Schrödinger equation (29) with Woods–Saxon potential (32). This problem
belongs to the boundary value problems which has an infinite interval of integration.
For the purpose of the numerical solution of the above mentioned problem we have
to approximate the infinite interval of integration by a finite one. For our numerical
experiments we consider the interval of integration r ∈ [0, 15] and a large domain of
energies, i.e., E ∈ [1, 1000].

Remark 14 In the case of positive energies, E = k2 the potential decays faster than
the term l(l+1)

r2
.

Based on the above remark, the Schrödinger equation reduces to:

y′′ (r) +
(

k2 − l(l + 1)

r2

)
y (r) = 0 (34)

for r greater than some value R.
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The above equation has linearly independent solutions kr jl (kr) and krnl (kr),
where jl (kr) and nl (kr) are the spherical Bessel andNeumann functions respectively.
Consequently, the solution of equation (29) (when r → ∞), has the asymptotic form

y (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(35)

where δl is the phase shift that may be calculated from the formula

tan δl = y (r2) S (r1) − y (r1) S (r2)

y (r1) C (r1) − y (r2) C (r2)
(36)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand end
point of the interval of integration and r2 = r1−h) with S (r) = kr jl (kr) andC (r) =
−krnl (kr). For the initial-value problems (the radial Schrödinger equation is treated
as an initial-value problem) we need y j , j = 0(1)3 before starting a four-step method.
The initial condition defines the first value of y i.e. y0. Using high order Runge–Kutta–
Nyströmmethods(see [121,122])wedetermine the values yi , i = 1(1)3.Nowwehave
all the necessary initial values and we can compute at r2 of the asymptotic region the
phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either

– of finding the phase-shift δl or
– of finding those E , for E ∈ [1, 1000], at which δl = π

2 .

We solved the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

y(0) = 0, y(r) = cos
(√

Er
)
for large r. (37)

The positive eigenenergies of the Woods–Saxon potential resonance problem are
computed using:

– The eighth order multi-step method developed by Quinlan and Tremaine [22],
which is indicated as Method QT8.

– The tenth ordermulti-stepmethod developed byQuinlan andTremaine [22], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [22],
which is indicated as Method QT12.

– The fourth algebraic ordermethod ofChawla andRao [27]withminimal phase-lag,
which is indicated as Method MCR4.

– The exponentially-fitted method of Raptis and Allison [91], which is indicated as
Method RA.

– The hybrid sixth algebraic order method developed by Chawla and Rao [26] with
minimal phase-lag, which is indicated as Method MCR6.
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CPU �me (inseconds)

Er
r m

ax

Fig. 9 Accuracy (digits) for several values ofC PU time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

– The classical form of the fourth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL.2

– The Phase-FittedMethod (Case 1) developed in [47],which is indicated asMethod
NMPF1.

– The Phase-FittedMethod (Case 2) developed in [47],which is indicated asMethod
NMPF2.

– The Method developed in [51] (Case 2), which is indicated asMethod NMC2.
– The Method developed in [51] (Case 1), which is indicated asMethod NMC1.
– The Method developed in [45], which is indicated asMethod RKTPLDDEA.
– The Method developed in [57], which is indicated asMethod HYBPLDDDEA.
– The NewObtained Hybrid LowComputational Cost Four-StepMethod developed
in Sect. 4, which is indicated as Method HYMETH8.

We compare the computed eigenenergies via the above mentioned methods with
reference values.3 In Figs. 9 and 10, we present themaximum absolute error Errmax =
|log10 (Err) | where

Err = |Ecalculated − Eaccurate| (38)

2 With the term classical we mean the method of Sect. 4 with constant coefficients.
3 The reference values are computed using the well known two-step method of Chawla and Rao [26] with
small step size for the integration.
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CPU �me (in seconds)

Er
r m

ax

Fig. 10 Accuracy (digits) for several values ofC PU time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

8 Conclusions

An efficient low computational cost hybrid explicit four-stepmethod of eight algebraic
order was investigated in this paper. More specifically, we constructed a method with
vanishing the phase-lag and its first, second, third and fourth derivatives. We investi-
gated the specific method as one block. We also studied how this vanishing procedure
effects on the computational efficiency of the proposed method.

The theoretical investigation of the developed method consists of the comparative
LTE analysis and the stability analysis (using scalar test equation with frequency
different than the frequency of the phase-lag analysis).

We studied also the computational efficiency of the obtained method via numerical
tests which was based on the numerical solution of the resonance problem of the radial
time independent Schrödinger equation.

The new introduced method is very efficient on any problemwith oscillating and/or
periodical solutions or problems with solutions contain the functions cos and sin or
any combination of them.

From the numerical experiments described above, we can make the following
remarks:
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1. The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL is more efficient than the fourth
algebraic order method of Chawla and Rao [27] with minimal phase-lag, which
is indicated as Method MCR4. Both the above mentioned methods are more
efficient than the exponentially-fitted method of Raptis and Allison [91], which
is indicated as Method RA. The method Method NMCL is more efficient
than the eighth algebraic order multistep method developed by Quinlan and
Tremaine [22], which is indicated as Method QT8, the Phase-Fitted Method
(Case 1) developed in [47], which is indicated as Method NMPF1 and the
Phase-Fitted Method (Case 2) developed in [47], which is indicated as Method
NMPF1.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[22],which is indicated asMethodQT10 ismore efficient than the fourth algebraic
order method of Chawla and Rao [27] with minimal phase-lag, which is indicated
asMethodMCR4. TheMethod QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [22], which is indicated
as Method QT8. Finally, the Method QT10 is more efficient than the classical
form of the sixth algebraic order four-step method developed in Sect. 4, which is
indicated as Method NMCL.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[22], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [22], which is indicated as
Method QT10.

4. The Method developed in [51] (Case 1), which is indicated as Method NMC1
is more efficient than the twelfth algebraic order multistep method developed by
Quinlan and Tremaine [22], which is indicated as Method QT12.

5. The Method developed in [45], which is indicated as Method RKTPLDDEA is
more efficient than the method developed in [51] (Case 1), which is indicated as
Method NMC1.

6. The Method developed in [57], which is indicated as Method HYBPLDDDEA
is more efficient than method developed in [45], which is indicated as Method
RKTPLDDEA.

7. Finally, low computational cost hybrid explicit four-step method of eight algebraic
order with vanished phase-lag and its first, second, third and fourth derivatives
(obtained in Sect. 4), which is indicated as Method HYMETH8, is the most
efficient one.

All computations were carried out on a IBMPC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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